
Exercise

Problem 1. Let d,k ⩾ 1 be fixed constants. Give a linear time algorithm for the following problem.

Instance: A graph of degree bounded by d.
Problem: Decide whether G has an independent set of size k.

Problem 2. Let k ⩾ 1 be a fixed constant. Give an O(mn)-time algorithm for the following
CLUSTER EDITING problem, where m is the number of edges and n is the number of vertices:

Instance: A graph G.
Problem: Decide whether one can add or delete at most k edges in G

so that it becomes a disjoint union of cliques.

Problem 3. A hypergraph H = (V,E) consists of a set V of vertices and a set E of hyperedges,
where each e ∈ E is a subset of V. Let d,k ⩾ 1 be fixed. Give a quadratic time algorithm for the
following problem.

Instance: A hypergraph H = (V,E) with |e| ⩽ d for all e ∈ E.
Problem: Decide whether there exists a subset S ⊆ V with |S| = k

such that e ∩ S ̸= ∅ for every e ∈ E.

Hint: Use the Sunflower Lemma of Erdös and Rado.

Problem 4. Let χ be a quadratic residue character in Fq : χ(x) = x(q−1)/2. That is, χ(x) = 1 if x
is a non-zero square in Fq, χ(x) = −1 if x is anon-square, and χ(0) = 0. Also, χ(0) = 0. Also,
χ(x · y) = χ(x) · χ(y).

Theorem 0.1 (Weil1948). Let f(t) be a polynomial over Fq which is not the square of another
polynomial, and has precisely s distinct zeros. Then

|
∑
x∈Fq

χ(f(x))| ⩽ (s− 1)
√
q.

Let G = (V,E) be a graph with V = Fq. Two vertices x,y ∈ V are adjacent if χ(x + y) =
1. For any a,b ∈ V, let codeg(a,b) be the number of vertices joined to a and b. Prove that
|codeg(a,b) − q/4| ⩽ O(

√
q) for large q.

Problem 5. The r-partite Turán problem is as follows. An r-partite graph is a graph whose vertices
can be divided into r disjoint and independent sets V1,V2, · · · ,Vr such that every edge connects a
vertex in Vi to one in Vj where i ̸= j. Formally, an r-partite graph G = (V1,V2, · · · ,Vr,E), where
V1,V2, · · · ,Vr are the vertex sets and E is the edge set, satisfies

– ∀i ̸= j, Vi ∩ Vj = ∅;
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– if (u, v) ∈ E and u ∈ Vi for some i ∈ [r], then v ̸∈ Vi.

Assume that there are at least ρ|Vi||Vj| edges between each pair (Vi,Vj). Then at what density ρ
must G contain Kr, a clique of size r?

(1) calculate ρ with the general Lovasz local lemma;

(2) calculate ρ with the cluster expansion lemma;

(3) calculate ρ with Shearer’s lemma.

Hint: the line graph of an undirected graph G is another graph L(G) constructed in the following
way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex
in common, make an edge between their corresponding vertices in L(G). Given L(Kr) and p⃗ =
(p, · · · ,p), one can verify that q̆S(p⃗) ≜

∑
indep.I⊆S(−1)|I|p|I| > 0 for each subset S of the vertices

of L(Kr) if p < 1
4(r−2) .

Problem 6. For N = 2n, we are given x ∈ {0, 1}N with the Hamming weight t. The goal is to find
an i such that xi = 1.

(1) Prove that any randomized algorithm needs Θ(N
t
) queries to solve the problem with proba-

bility of success at least 2/3

(2) If t = N/4, the Grover’s algorithm always finds a solution with certainty after just one query.

Problem 7. Let I =
(

1 0
0 1

)
,X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
,Z =

(
1 0
0 −1

)
.

(1) Prove that any 2 × 2 matrix can be written as a linear combination of I,X, Y,Z.

(2) Let ρ be a density operator, with an expansion ρ = c0I+ c1X+ c2Y + c3Z. Prove that c0 = 1
2

and ci ∈ R. Moreover,
∑3

i=1 c
2
i ⩽ 1

4 . The equality holds if and only if ρ is a rank-one matrix.

Problem 8. Consider a network containing n computers, some of these computers are connected
by cables. Therefore, we can use an undirected graph G = (V,E) to model the network, where
|V | = n and there is an edge between two vertices iff there is a cable connecting the two corre-
sponding computers. Assume G is connected. For each edge e ∈ E, we associate a weight we ∈ R+

with it.
Initially, computers in the network do not know the topology of the network. That is, they do

not know how G looks like. However, for each computer, it does know the edges incident to it
(i.e., the cables connected to it), and the weights of these edges.

Two computers can communicate with each other if there is a cable connecting them. Specif-
ically, the system evolves over rounds. At the beginning of each round, for each computer, for
each of the cable connected to it, it can send a message to the computer at the other end of the
cable. By the end of this round, for each computer u, for each of the cable connected to it, if the
computer v at the other end of the cable sent a message mv→u over this link at the beginning of
this round, computer u will receive the message mv→u.

Now, suppose the computers want to compute a minimum spanning tree of G. Try to devise
an algorithm and analyze how many rounds your algorithm needs. Also try to briefly argue the
correctness of your algorithm.

Notice, your algorithm would be a distributed algorithm. That is, all computers in the network
will run an identical algorithm, and these computers will run this algorithm in parallel. Further-
more, G should not be the input of your algorithm, since no computer knows the entire network
topology initially. However, recall that each computer does know the cables connected to it and
the weights of them. Moreover, computers can communicate with each other in each round to
gradually gain more information regarding G.
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